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Summary 

In many chromatographic software products, weighted polynomial regression is used for the 

calibration curves. Weighting is a useful mean to account for the measurement error that may 

depend on the detector response value. Confidence intervals show how accurate a measurement 

is with the help of a calibration curve.  

We have extended the confidence interval theory to the frequent case of weights, expressed as a 

function of Y value, in particular 1/Y and 1/Y
2
. This extension allows accurate calculation of 

concentrations with confidence intervals for calibration curves, constructed using point 

weighting. Examples are shown that demonstrate applications of weighted calibration curves 

with confidence intervals in chromatography. 

Introduction 

General theory of linear regression analysis is usually used for calculating confidence intervals. 

However, in analytical chemistry, we may face a practical problem where the  regression 

analysis cannot be applied directly and needs some adaptation.  

 

A very common situation in analysis is that the error is not the same for different signal levels. 

The error can be proportional to the signal itself, that is RR ~ . For radioactivity 

measurements we would have RR ~ . Here, R is the detector response and R is a related 

measurement error. Correct handling of such errors and calculating true errors in the resulting 

concentration requires special consideration.   

 

Another example of weighted regression is curve fitting by polynomial of second or third power. 

Conventional linear regression analysis gives tools for calculating confidence intervals for this 

case.  Exact formulas are typically not present in specialized literature for analytical chemistry.  

 

The most important practical cases related to the confidence intervals are the following: 

 

1. We build the regression of value iy  which is measured with error at the precisely known 

set ix  (calibration). Then, we make a set of measurements of the detector response  *Y  at 

known *x . What is the variation of *Y  value and how does it differ from the expected 

value *̂Y , calculated from calibration at *x ? 

2. We  build the regression of value iy  which is measured with error over the precisely 

known set ix  (calibration). Then, we measure the detector response *Y  at some unknown 

*x . A value *x̂  from calibration curve at *Y  is used as the estimate of *x . What is a 

variation of *x̂  value and how it differs from "true" *x ? 

 

This article is based on the classical work on linear regression analysis [1]. Still applied aspects 

of analytical chemistry are considered. 
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I. Regression Without Weighting 

Regression without weighting assumes that the error of measurement depends on neither the 

detector response nor the concentration. Regression can be linear through origin or not through 

origin. Also, it can be a polynomial of second or third order. 

This case is considered in details in the literature. 

 

A regression is defined by the expression:                                                          

εβXY   (I.1), (Seber 3.2) 

 

where X is a regression matrix. For example, quadratic regression not going through origin it is 
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The lower index refers to the number of calibration point. 

}....{ 21 nyyyY  is vector of detector response values 

},...,,{ 21 nε  - a related vector of errors of measurements. 

},,{ 210 β  - a regression coefficients which must be calculated. 

 

It is assumed that errors of measurements follow the rule: 
2],cov[   ijji  

nID  2][   

That is, errors i  are not correlated and have the same dispersion. 

The solution of the dispersion is 

 

YXXXβ  1)(ˆ  (I.2),  (Seber 3.5) 

 

 

Confidence interval at )1(100  level for response value at a given x
*
 

 

We are building the regression of response values iy  measured with errors over the precisely 

known set ix  (calibration). After building the calibration curve, we make another measurement 

*Y  at some known x
*
. 

Then, the confidence interval of the single measurement is given by the expression: 
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(Seber § 3.3) 
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*u  (Seber 5.17) 

},...,,1{ **

pxx*x  – if polynomial curve does not go through  



origin 

},...,{ **

pxx*x  – if polynomial curve goes through origin 

βхY *
ˆˆ

*
  (Seber § 5.2) 

n  – number of calibration points 
p  – power of the polynomial 

mt  

– Student's coefficient at confidence 

probability )1(   with m degrees of 

freedom. 

 

 

Confidence interval for prediction in solving the inverse problem (discrimination) 

 

We build the regression of response values iy  measured with errors at the precisely known set 

ix  (calibration). After building a calibration curve, we make another measurement *Y . Using the 

calibration curve, we find *x̂  - an estimate of the true value *x : 

βхY *
ˆˆ*
  

We have to follow the reasoning of (Seber § 7.2.6) 

Let *хх  – true value of х in our measurement. 

We define *Ŷ  so that 
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Thus a set of х  which satisfy the condition 
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form a confidence region at )1(100   level for *х  

Here we use: 

 

βхY ˆˆ x  (I.5) 

xX)X(x
1xu  (I.6) 

 

In the particular case of linear regression, formula (I.4) is equivalent to (Seber § 7.11).  

For linear regression going through origin, formula (I.4) gives result equivalent to (Seber § 7.18).  



II. Weighted Regressions 

 

Assumptions, which were used in the previous chapter for constructing the regression   

 

εβXY   (II.1) 

are 
2],cov[   ijji  

nID  2][   

 

Still, following to (Seber § 3.6), we can build a generalized method of least squares. 

Let VD  2][  , where V is a known positively-defined matrix of size )( nn . 

In this case, non-singular matrix K exists so that 

KKV   

We define 

YKZ 1  
,  

XKB 1  
 

ε
1

Kη   

and build another regression 

 

ηβBZ   (II.2) 

In this regression 0][ ηE и nIηD  2][   

This means that model (II.2) is equivalent to model (I.1), where all i are not correlated and have 

the same dispersion.  

 

Least-squires estimate β̂ for vector β is calculated by minimizing of value ηη  and is given by 

expression  

 

YVXX)VX(ZBB)B(β
1111  ˆ  (II.3) 

Just in the same way the expected value *Ŷ  at a given known *х  is given by 

βхY *
ˆˆ

*
  

and true unknown *х  for measured *Y is estimated by *х̂ : 

βхY *
ˆˆ*
  

 

Methods of evaluating confidence intervals are not directly applicable, although (II.2) and (I.1) 

seems to be equivalent.  

We can expect that the statistical behavior of vector β̂ from (II.3) is analogous to the  

conventional regression model because (II.3) is the usual estimate made by the least squares 

method.  In the experiment, we are measuring or setting values  *х  and *Y .  In general, we 

cannot match them related values  *b  and *Z  in inverted regression. 

 

Fortunately, in some practically significant cases such a match is possible.  

 

 

We need to make additional assumptions. 



Let us assume that errors i  are not correlated as previously, that is 0],cov[ ji  when ji  . 

Now the dispersions are not the same. 

Let us assume that we are making multiple measurements of the detector response at a given 

strictly known х~ and by averaging responses we obtain a true response Y
~

. 

Also, assume that the dispersion of the error depends on  х~  and Y
~

only, that is 
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Also, we have to assume that errors are the same for calibration and for analyte and they follow 

(II.4). 

In practice a particular form of  (II.4) is known approximately and is defined by the type of 

physical experiment. 

 

The most important models are listed below: 

 

1),( Yxw  (II.5.1) – conventional regression, no weighting  

Y
Yxw

1
),(   

(II.5.2) – error of measurement is proportional to 

Y . For example, this is a case of 

radioactivity detector.  

2

1
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Y
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(II.5.3) – Constant relative error? That is 

YY ~ and const
Y

Y



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(II.5.4) – error of measurement is proportional to 

x . Analogous to (II.5.2), if we replace 

Y  with х . 

2

1
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(II.5.5) – error of measurement is proportional to 

x . Analogous to (II.5.3), if we replace Y  

with х . 

 

We define matrix V as: 
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(II.6) 

where i – is a number of the calibration point. 

 

When we are building the calibration, a precise value iY
~

 for calibration point is unknown. 

Therefore, we have to use approximation by replacing ii YY 
~

 . This means that a true error 

matrix V
~

 is replaced by an approximate V .  

 

An inverse matrix for V is: 
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Confidence interval at )1(100  level for the response value at a given *x . 

Using (II.3) we can estimate the true detector response *Y  at a given known *x . A natural 

estimate is: 
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is an estimate of dispersion of measured response *Y , according to (II.4). 

Now we define 
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is an estimate for *Z  in inverted regression (II.2). 

This means that the method for calculating confidence intervals from chapter for (I) is applicable 

for *Z  and *Ẑ . 

 

Then, a confidence interval for response value of single measurement is given by: 
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Now, we need to convert from ),( Zb  back to ),( Yx . We get: 
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Confidence interval for prediction in solving an inverse problem (discrimination). 

 

We are making an estimate *x̂  of a true value *x  using the regression (II.3) at a measured 

detector response *Y : 

βхY *
ˆˆ*
  

We need to repeat the reasoning, analogous to the one we made for confidence interval for 

response value.  

In the same way we get: 
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We define 
*

*
*

k

x
b  . An estimate of confidence intervals from chapter (I) is applicable for *b  and 

*̂b . Namely, a set of all b which follow the condition 
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form a confidence region for *b  at )1(100   level.  

Here we define: 
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Now we need to convert back from ),( Zb  to ),( Yx . Assuming 
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region for *x  at  )1(100   level. This is a set of all х , which follow the condition: 
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III. Examples 

The examples below represent typical regressions of different polynomial powers and different 

weighting models. For demonstration purposes, the simulated data are generated with significant 

error. Confidence intervals for response values at 0.95 confidence probability are drawn. 
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Figure 1. Linear polynomial not going through the origin. The 

dispersion of error is the same for all measurements, no 

weighting.  
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Figure 2. Linear polynomial not going through the origin. 

The dispersion of error is proportional to Height . 

Weighting 1/Height. 
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Figure 3. Linear polynomial not going through the 

origin. The dispersion of error is proportional to 

Height (constant relative error). Weighting 1/Height
2
. 
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Figure 4. Linear polynomial not going through the origin, 

the same data as on Fig.3. The dispersion of error is 

proportional to Height (constant relative error). Regression 

is constructed without weighting (just as if absolute error is 

constant). This regression gives an approximation formula 

that is not quite correct and has incorrect confidence 

intervals. 
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Figure 5. Quadratic polynomial through the origin. The 

dispersion of error is proportional to Height . Weighting 

1/Height. 

 

 



A correct test plan for calibration is especially important when building regression with a non-

linear polynomial. Let us consider a regression of the simulated data which should be 

approximated by quadratic polynomial. If we select 3 concentrations and make measurements 

twice at each concentration, the calibration curve could look quite nice. Still, when we calculate 

and draw related confidence intervals we would notice that adequate results are possible near the 

initial concentrations only. Therefore, this test plan is incorrect. 
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Figure 6. Quadratic polynomial not going through origin. 

The dispersion of error is the same for all measurements, no 

weighting. The simulated detector response is measured 

three times at three concentrations. This test plan produces a 

poor prediction.  

 

 

A prediction becomes much better if we select uniformly distributed concentrations for the 

calibration. This calibration curve would supply good predictions over an entire range of 

calibration. 
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Figure 7. Quadratic polynomial not going through origin. The 

errors are the same for all measurements, no weighting. The 

concentrations for calibration are uniformly distributed. This test 

plan produces an adequate prediction.  



IV.Conclusion 

We have strict mathematical expressions for confidence intervals for detector response and for 

the prediction in an inverse problem in the case of generalized regression with weighting. 

An expressions (II.8) and (II.10) are generalizations of (I.3) and (I.4) respectively. They are 

applicable either for linear regressions or for regressions with polynomial of other powers 

(quadratic, cubic etc.). 
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