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Briefs  

A noise filtering method that provides the lowest possible 

confidence interval for every data point. 

 

Abstract 

A method of noise filtering based on confidence interval evaluation is 

described.  In the case of the approximation of a function, measured 

with error by a polynomial or other functions that allow estimation of 

the confidence interval, a minimal confidence interval is used as a 

criterion for the selection of the proper parameters of the 

approximating function. In the case of the polynomial approximation 

optimized parameters include the degree of the polynomial, the 

number of points (window) used for the approximation, and the 

position of the window center with respect to the approximated point. 

The Method is demonstrated using generated and measured 

chromatograms. The special considerations on confidence interval 

evaluation and quality of polynomial fit using noise properties of the 



2 

 

data array are discussed. The Method provides the lowest possible 

confidence interval for every data point. 

 Introduction 

Any measurement contains a signal portion and random error caused 

by the electronics utilized, variation of ambient conditions, radio 

interferences, etc.  This error should be diminished as much as 

possible to achieve the best estimate of the measured signal.  There 

are many methods of noise reduction, both linear (moving average, 

Gaussian, Savitzky-Golay [1], Fourier transform-based) and nonlinear 

(median filtering)[2].  However, most of these methods change the 

shape of the object, e.g., a peak in chromatography or capillary 

electrophoresis may change its shape after noise filtering, and the 

better the noise reduction is at the baseline, the more significant 

change of the peak shape is observed.  

Novel linear methods have emerged, such as noise reduction, based 

on wavelet transform [2]. They do not provide a final solution either. 

The main problem in all of the methods is a lack of clear-cut 

quantitative criterion of the filtering quality. 

On the other hand, we can approximate our data set with a moving 

polynomial (similar to the method of Savitzky and Golay [1]) and 

calculate the confidence intervals for every approximation. Theory of 

confidence intervals is a well-established technique, widely used in the 

calibration of systems of different nature. For single-dimensional data, 

the confidence interval can be estimated with [3]:  
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n - number of data points used for polynomial approximation (gap of 

the filter); 

p - number of parameters of the polynomial (power +1);  
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- matrix of values on 

independent axis (usually a time 

or position axis); 

 

}...,,{ 21 nyyyY  - vector of detector response values;  

},...,,1{ `1

**

 pxx*x ; 

x* - position at which smoothed (approximated) value is estimated; 

YXXXβ  1)(ˆ  - Polynomial coefficients for regression; 



mt - Student's coefficient for confidence probability (1-δ) and m 

degrees of freedom. 

We applied confidence interval calculation principles to noise 

reduction task. 
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Algorithms  

Filtering Algorithm for fixed window and degree of the 
polynomial 

To simplify our task we will consider chromatographic data as 

measured with a constant data rate and we will not consider the case 

of re-sampling.  Input array is just an array of raw data, and output 

array consists of the same number of data points and an estimate of 

confidence interval for every data point. An algorithm of noise filtering 

using confidence intervals works as follows: 

1. Evaluate points and confidence intervals for all points within a 

selected window. 

2. For all points within the window compare new confidence interval 

with that in the output array. If the new interval is smaller than stored 

in the output array or the point was not evaluated, replace stored point 

and its confidence interval. 

3. Shift evaluation window and go to step 1. 

So, every point of the chromatogram is approximated n times and an 

estimate with the best confidence interval remains as filtered value. 

Computational complexity of this simple Confidence filter is 

comparable with that of convolution, (e.g. Savitzky-Golay) and linearly 

depends on the product  

(window width)∙(degree of the polynomial).  

Already this simplest implementation provides some benefits over the 

traditional Savitzky-Golay filter in several important cases: baseline 

step between two peaks (Figure 1); triangular peak originating from 

capillary electrophoresis; outlier point. The main benefit of the 
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Confidence filter in this case is that the points close to an abrupt 

change of signal level (step) are not disturbed by this step. 

  

Figure 1. Filtering with conventional Savitzky-Golay  (SG, thin line) 

and Confidence adaptive non-central approximation filter (ASG, thick 

line).  Original data are drawn with dotted line. The filter gap is the 

same in both cases and equals 41 points. 

  

Filtering Algorithm for variable window and degree of 
the polynomial 

Obvious improvement of the simplest filter is changing the window 

and/or degree of the polynomial. Smaller windows are expected to 

give better estimates of steep slopes and bigger windows – better 

noise reduction for long baseline regions. However, small and large 

windows may lead to errors in filtering for different reasons. For small 

window we have a rather high probability of an accidental good fit of 

the polynomial, where confidence interval estimate using Formula 1 
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will give a too optimistic estimate. This error is caused by the fact that 

Formula 1 gets an estimate of experimental error from the small 

subset of the data array. Another problem exists in the case of large 

windows: decrease of confidence interval due to a large number of 

degrees of freedom may provide a formally very good confidence 

interval for rather poor approximation polynomial. 

The solution for both problems can be easily provided, if we assume 

that we know parameters of the noise in our data array. That is, we 

assume that the noise is white, noise density probability is constant 

throughout the array and does not depend on measurement number 

or value, and noise standard deviation equals σ. As S
2
 from formula 1 

is an unbiased estimate of σ
2
 [3], we can assume that all cases when 

S from Formula 1 is below σ are accidental and we should use σ for 

the estimate of confidence interval instead of S: 

   SSSSi ,;,     (2) 

Another criterion, based on known noise level, relies on the fact, that 

distribution of S has its own width, which quickly decreases with 

increasing size of the window [3]:  

 
 pn

S


1
~)Var( 2  

Note, that the value  

   2Var Spn   

is a constant for all window widths and polynomial degrees properly 

fitting our data. 
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So, we select such a rejection coefficient k that the polynomial is 

treated as improper evaluation of the data array due to the wrong 

approximation model (window width and degree of the polynomial) if it 

satisfies condition:  
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where subscript n corresponds to the values originating from  noise 

definition window.  

 

 

 

 

 

 

 

 

Figure 2. Distribution of dispersion for valid approximations and 

behavior of approximation procedure depending on S. 
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Evaluating noise level 

Now we have to find a way to estimate σ using our data array. The 

robust way of noise estimation was selected: user has to define width 

of noise window and a degree of the polynomial to approximate data 

using this window. Requirements to the window and degree are that 1) 

most of signal peculiarities, which are treated by the user as noise in 

his data are effectively suppressed if the array is filtered by Savitzky-

Golay algorithm with this width and 2) most of the data array should be 

properly described by the polynomials of this window/power. Data 

array is approximated 3∙L/n times, where L is the size of the data array 

and n – size of the noise definition window; every time window is 

shifted to higher indices W/3 points. S
2
 value from each approximation 

is stored in the new array E, which is used for estimation of σ
2
 and 

Var(S
2
) in several look-through passes. During the first pass we 

calculate average and variance of values in E, on the second pass we 

accept only values, that pass the condition  

 22 Var3 SEi   

and re-calculate new σ2 and variance. This outlier rejection procedure 

is repeated until σ2 and variance stop changing, but not more than 5 

times; it effectively rejects all outliers, originating from the regions with 

poor approximation of the data, such as the baseline steps, jumps, 

sharp peaks caused by sample injection. 
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Outline of the Confidence filtering algorithm: 

1.  Evaluate noise level using noise definition window width n and 

degree of the polynomial p-1, get σ2 and Var(S2) estimates; 

2.  Define a list of window widths and degrees of polynomial to be 

applied to filtering; 

3.  Fill output array with input data and confidence intervals with 

 ½

1t  

4.  Select the first element of the list; 

5.  For all possible positions of the polynomial within input array: the 

approximate data within the window; evaluate S2; if S2 is too big 

and fits condition (3), skip position; if S2 is below σ2 replace S2 

with σ2 (condition 2). For all points within a window compare new 

confidence interval (calculated with corrected S) with output value. 

If the new interval is smaller than stored in the output array, 

replace stored point and its confidence interval; 

6.  Select the next element of the list; if the list is complete stop 

filtering. 

We selected to start implementation of the described noise filtering 

procedure with changing window at fixed (cubic) degree, δ=0.05 

(corresponds to 95% confidence level) and k=2. To improve 

calculation speed, logarithmic steps were used, increasing or 

decreasing window √2 times with every step. In addition to filtering 

with the noise definition window, three steps were performed upwards 

and three downwards, increasing overall window width range to 8. 

Even this quite simple implementation provided excellent results, 

which are shown below. 
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Results 

White noise 

 

 

 

Figure 3. Filtering artificial chromatogram of EMG [4] peak with white 

noise applied; black line – original data; blue line – Confidence filter 

with noise definition width of 31; magenta – Savitzky-Golay filter with 

width of 85 (corresponding to the maximum window width allowed for 

Confidence filter); light brown – Savitzky-Golay filter with width of 13 

(corresponding to the minimum window width allowed for Confidence 

filter). Quality of baseline filtering corresponds to the widest window 

and peak shape does not change. 
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Pump pulsations 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. a) Pump pulsations are effectively suppressed by 

Confidence filter using noise definition window width of 121 (light 

brown line). Black line – original data. 

 b) When narrow noise definition window 11 (corresponding to half 

cycle of pump pulsation) is used, pump pulsations are not 

suppressed, just smoothed. Curves are shifted along Y axis to avoid 

overlapping. 
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Capillary electrophoresis 

One of the most interesting fields for application of Confidence filter, 

as some CE peaks are very narrow and other triangular. 
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Figure 5. Approximation of Capillary Electrophoresis peak (black line) 

with Confidence filter, width=101(blue line), and Savitzky-Golay filter 

(red line), width = 35 (corresponds to the smallest window of 

Confidence filter). In this case Confidence filter has undoubted 

advantage, as eliminates noise much better and makes much less 
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disturbance near the steep end of the peak. Green line shows 10 

times amplified confidence interval of the approximation by 

Confidence filter.  

b) Behavior of the polynomial width (blue line) and of the distance of 

the point used for approximation from the center of the polynomial 

(black line), positive – to the right, negative – to the left. Note, that 

peak top is approximated by non-central approximation.  

 

Discussion 

Our implementation of the Confidence Filter does not reject outliers; 

rather it avoids them, leaving them as they are. It’s rather easy to 

imagine a modified procedure, based on the robust regression 

methods [5], and outliers will be eliminated. However, there is a 

danger behind such approach, as robust regression may obscure 

model errors, so we currently prefer to deal with separate object-

dependent outlier elimination procedures. 

The confidence interval is a very natural criterion of approximation 

quality and it perfectly fits the case of noise filtering. In the case of 

variable window width and/or degree of the polynomial additional 

criteria based on noise estimate have to be applied to avoid effects of 

an accidental good fit for small approximation windows and peak 

suppression in wide windows.  

The algorithm of the Confidence Filter very effectively 

suppresses baseline noise and significantly improves detection 

and quantification limits. Even non-white noise, such as pump 

pulsations or chemical noise can be suppressed; in addition the 

peak shape does not suffer. Peak metrology gets a chance to 
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become a science, definitions of LOD and LOQ have to be re-

considered using the confidence interval information. 
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